
SouthernBiotech

Goat F(ab')₂ Anti-Human IgD

Cat. No.	Format	Size
2032-01	Purified (UNLB)	0.5 mg
2032-02	Fluorescein (FITC)	0.5 mg
2032-08	Biotin (BIOT)	0.5 mg
2032-09	R-phycoerythrin (PE)	0.25 mg
2032-30	Alexa Fluor [®] 488 (AF488)	0.5 mg
2032-31	Alexa Fluor [®] 647 (AF647)	0.5 mg
2032-32	Alexa Fluor [®] 555 (AF555)	0.5 mg

Human peripheral blood lymphocytes were stained with Goat $F(ab')_2$ Anti-Human lgD-AF488 (SB Cat. 2032-30) and Mouse Anti-Human CD19-PE (SB Cat. No. 9340-09).

Description

Specificity	Reacts with the heavy chain of human IgD	
Source	Pepsin digest of Goat Anti-Human IgD (SB Cat. No. 2030)	
Cross Adsorption	Human IgG, IgM, and IgA; may react with IgD from other species	

Applications

Quality tested applications include – ELISA FLISA FC ^{3-5,7-11}

Other referenced applications include – IHC-FS $^{1\text{-}3,6,9}$ IHC-PS 3 Sep 1,6 Stim $^{12\text{-}14}$

Working Dilutions

ELISA	BIOT conjugate	1:5,000 – 1:20,000
FLISA	FITC, AF488, and AF555 conjugates PE and AF647 conjugates	1:100 – 1:400 ≤ 1 μg/mL
Flow Cytometry	FITC, BIOT, and AF488 conjugates PE and AF647 conjugates For flow cytometry, the suggested use of these reagents is in a fina	\leq 1 μg/10 ⁶ cells \leq 0.1 μg/10 ⁶ cells al volume of 100 μL
Other Applications	Since applications vary, you should determine the optimum working dilution for the product that is appropriate for your specific need.	

For Research Use Only. Not for Diagnostic or Therapeutic Use.

Handling and Storage

- The purified (UNLB) antibody is supplied as 0.5 mg purified immunoglobulin in 1.0 mL of borate buffered saline, pH 8.2. *No preservatives or amine-containing buffer salts added.* Store at 2-8°C.
- The fluorescein (FITC), Alexa Fluor[®] 488 (AF488), Alexa Fluor[®] 555 (AF555), and Alexa Fluor[®] 647 (AF647) conjugates are supplied as 0.5 mg in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The biotin (BIOT) conjugate is supplied as 0.5 mg in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The R-phycoerythrin (PE) conjugate is supplied as 0.25 mg in 1.0 mL of PBS/NaN₃ and a stabilizing agent. Store at 2-8°C. **Do not** freeze!
- Protect fluorochrome-conjugated forms from light. Reagents are stable for the period shown on the label if stored as directed.

Warning

Some reagents contain sodium azide. Please refer to product specific (M)SDS.

References

- 1. Xu W, He B, Chiu A, Chadburn A, Shan M, Buldys M, et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat Immunol. 2007;8:294-303. (IHC-FS, Sep)
- Xu W, Santini PA, Matthews AJ, Chiu A, Plebani A, He B, et al. Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J Immunol. 2008;181:276-87. (IHC-FS)
- Chen K, Xu W, Wilson M, He B, Miller NW, Bengtén E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009;10:889-98. (IHC-FS, IHC-PS, FC)
- Green LL, Jakobovits A. Regulation of B cell development by variable gene complexity in mice reconstituted with human immunoglobulin yeast artificial chromosomes. J Exp Med. 1998;188:483-95. (FC)
- Joseph AM, Babcock GJ, Thorley-Lawson DA. EBV persistence involves strict selection of latently infected B cells. J Immunol. 2000;165:2975-81. (FC)
- 6. He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A₂ class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity. 2007;26:812-26. (Sep. IHC-FS)
- 7. Warnatz K, Schlesier M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B Clin Cytom. 2008;74:261-71. (FC)
- 8. He B, Santamaria R, Xu W, Cols M, Chen K, Puga I, et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol. 2010;11:836-45. (FC)
- Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2012;13:170-80. (FC, IHC-FS)
- 10. Gieseke F, Mang P, Viebahn S, Sonntag I, Kruchen A, Erbacher A, et al. Siglec-7 tetramers characterize B-cell subpopulations and leukemic blasts. Eur J Immunol. 2012;42:2176-86. (FC)
- 11. Li FJ, Schreeder DM, Li R, Wu J, Davis RS. FCRL3 promotes TLR9-induced B-cell activation and suppresses plasma cell differentiation. Eur J Immunol. 2013;43:2980-92. (FC)
- 12. Jiang A, Clark EA. Involvement of Bik, a proapoptotic member of the Bcl-2 family, in surface IgM-mediated B cell apoptosis. J Immunol. 2001;166:6025-33. (Stim)
- 13. Rankin AL, Seth N, Keegan S, Andreyeva T, Cook TA, Edmonds J, et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis. J Immunol. 2013;191:4540-50. (Stim)
- 14. Smith MJ, Packard TA, O'Neill SK, Dunand CJ, Huang M, Fitzgerald-Miller L, et al. Loss of anergic B cells in pre-diabetic and new onset T1D patients. Diabetes. 2014 Dec 18. pii: DB_131798. [Epub ahead of print]. (Stim)

Alexa Fluor[®] 488, 647, and 555 are provided under an Intellectual property license from Life Technologies Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. For information on purchasing a license to this product for any other use, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@lifetech.com.