SouthernBiotech

Mouse Anti-Chicken CD8 α

Cat. No.	Format	Size
8390-01	Purified (UNLB)	0.5 mg
8390-02	Fluorescein (FITC)	0.5 mg
8390-08	Biotin (BIOT)	0.5 mg
8390-09	R-phycoerythrin (PE)	0.1 mg

Chicken peripheral blood lymphocytes were stained with Mouse Anti-Chicken CD8 α -PE (SB Cat. No. 8390-09) and Mouse Anti-Chicken CD4-FITC (SB Cat. No. 8210-02).

Overview

Clone	EP72
Isotype	Mouse (BALB/c) IgG _{2b} κ
Immunogen	Chicken splenocytes
Specificity	Chicken CD8α; Mr 34 kDa
Alternate Name(s)	N/A

Description

In the chicken, the CD8 molecule is present in two forms - (i) a homodimer of two α chains and (ii) a heterodimer of an α chain and a β chain. Chicken CD8 is expressed on approximately 80% of thymocytes, 15% of blood mononuclear cells and 50% of spleen cells but less than 1% of cells in the bursa and bone marrow. While the vast majority of CD8⁺ cells in the thymus, spleen, and blood of adult chickens express both CD8 α - and CD8 β -chains, a relatively large proportion of the CD8⁺ TCR $\gamma\delta$ cells in the spleens of embryos and young chicks express only the α -chain of CD8. Among intestinal epithelial lymphocytes, the major CD8⁺ T cell populations present in mice are conserved but there is a population of TCR $\gamma\delta$ CD8 $\alpha\beta$ cells in the chicken that is not found in rodents. The monoclonal antibody EP72 recognizes the CD8 α chain.

Applications

FC – Quality tested ⁴⁻⁷ IHC-FS – Reported in literature ^{2,3}

Working Dilutions

Flow Cytometry	FITC and BIOT conjugates	\leq 1 μ g/10 ⁶ cells	
	PE conjugates	\leq 0.2 μ g/10 ⁶ cells	
	For flow cytometry, the suggested use of these reagents is in a final volume of 100 μL		
Other Applications	Since applications vary, you should determine the optimum working appropriate for your specific need.	rmine the optimum working dilution for the product that is	

For Research Use Only. Not for Diagnostic or Therapeutic Use.

Handling and Storage

- The purified (UNLB) antibody is supplied as 0.5 mg of purified immunoglobulin in 1.0 mL of borate buffered saline, pH 8.2. No preservatives or amine-containing buffer salts added. Store at 2-8°C.
- The fluorescein (FITC) conjugate is supplied as 0.5 mg in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The biotin (BIOT) conjugate is supplied as 0.5 mg in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The R-phycoerythrin (PE) conjugate is supplied as 0.1 mg in 1.0 mL of PBS/NaN₃ and a stabilizing agent. Store at 2-8°C. **Do not** freeze!
- Protect fluorochrome-conjugated forms from light. Reagents are stable for the period shown on the label if stored as directed.

Warning

Some reagents contain sodium azide. Please refer to product specific SDS.

References

- 1. Paramithiotis E, Tkalec L, Ratcliffe MJ. High levels of CD45 are coordinately expressed with CD4 and CD8 on avian thymocytes. J Immunol. 1991;147:3710-7. (Immunogen)
- 2. Reemers SS, van Haarlem D, Groot Koerkamp MJ, Vervelde L. Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow. J Gen Virol. 2009;90:2134-46. (IHC-FS)
- 3. Reemers SS, Jansen C, Groot Koerkamp MJ, van Haarlem D, van de Haar P, Degen WG, et al. Reduced immune reaction prevents immunopathology after challenge with avian influenza virus: a transcriptomics analysis of adjuvanted vaccines. Vaccine. 2010;28:6351-60. (IHC-FS)
- Marmor MD, Benatar T, Ratcliffe MJ. Retroviral transformation in vitro of chicken T cells expressing either α/β or γ/δ T cell receptors by reticuloendotheliosis virus strain T. J Exp Med. 1993;177:647-56. (FC)
- 5. Choi KD, Lillehoj HS, Song KD, Han JY. Molecular and functional characterization of chicken IL-15. Dev Comp Immunol. 1999;23:165-77. (FC)
- Chen KL, Tsay SM, Chiou PW, Sun CP, Weng BC. Effects of caponization and different forms of exogenous androgen implantation on immunity in male chicks. Poult Sci. 2010;89:887-94. (FC)
- 7. Norup LR, Dalgaard TS, Pedersen AR, Juul-Madsen HR. Assessment of Newcastle disease-specific T cell proliferation in different inbred MHC chicken lines. Scand J Immunol. 2011;74:23-30. (FC)