SouthernBiotech

Mouse Anti-Human CD54

Cat. No.	Format	Size
9441-01	Purified (UNLB)	0.1 mg
9441-02	Fluorescein (FITC)	100 tests
9441-08	Biotin (BIOT)	100 tests
9441-09	R-phycoerythrin (PE)	100 tests
9441-11	Allophycocyanin (APC)	100 tests

Human peripheral blood lymphocytes were stained with Mouse Anti-Human CD54-PE (SB Cat. No. 9441-09).

Overview

Clone	15.2
lsotype	Mouse (BALB/c) IgG ₁ κ
Immunogen	Rheumatoid synovial cells and human monocytes
Specificity	Human/Porcine CD54; Mr 90 kDa
Alternate Name(s)	ICAM-1, intracellular adhesion molecule-1, Ly-47
Workshop	N/A

Description

CD54, also known as intercellular cell adhesion molecule-1 (ICAM-1), is a 90 kDa type I transmembrane glycoprotein and a member of the immunoglobulin superfamily. It exhibits a wide tissue distribution being expressed on both hematopoietic and non-hematopoietic cells. ICAM-1 expression on leukocytes is low but is rapidly upregulated upon activation. Expression on endothelium and other non-hematopoietic cells is strongly upregulated by inflammatory mediators. The ligands of CD54 are CD11a/LFA-1 α and CD11b/Mac-1 α . Endothelial CD54 contributes to the extravasation of leukocytes from blood vessels particularly in areas of inflammation. CD54 on antigen-presenting cells (APC) contributes to antigen-specific T cell activation presumably by enhancing interactions between T cells and APC.

Applications

FC – Quality tested ¹⁴⁻¹⁷ IHC-FS – Reported in literature ¹⁻³ ICC – Reported in literature ^{4,18} IP – Reported in literature ⁷ WB – Reported in literature ⁵ Block – Reported in literature ^{6,8,9} Neut – Reported in literature ⁷ ELISA – Reported in literature ¹⁰⁻¹³

Working Dilutions

Flow Cytometry	Purified (UNLB) antibody FITC, BIOT, PE, and APC conjugates	≤ 1 μg/10 ⁶ cells 10 μL/10 ⁶ cells	
	For flow cytometry, the suggested use of these reagents is in a final volume of 100 μL		
Other Applications	Since applications vary, you should determine the optimum v appropriate for your specific need.	mine the optimum working dilution for the product that is	

For Research Use Only. Not for Diagnostic or Therapeutic Use.

Handling and Storage

- The purified (UNLB) antibody is supplied as 0.1 mg of purified immunoglobulin in 1.0 mL of borate buffered saline, pH 8.2. No preservatives or amine-containing buffer salts added. Store at 2-8°C.
- The fluorescein (FITC) conjugate is supplied as 100 tests in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The biotin (BIOT) conjugate is supplied as 100 tests in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The R-phycoerythrin (PE) and allophycocyanin (APC) conjugates are supplied as 100 tests in 1.0 mL of PBS/NaN₃ and a stabilizing agent. Store at 2-8°C. Do not freeze!
- Protect fluorochrome-conjugated forms from light. Reagents are stable for the period shown on the label if stored as directed.

Warning

Some reagents contain sodium azide. Please refer to product specific (M)SDS

References

- 1. Norton J, Sloane JP, Al-Saffar N, Haskard DO. Expression of adhesion molecules in human intestinal graft-versus-host disease. Clin Exp Immunol. 1992;87:231-6. (IHC-FS)
- Bloom S, Simmons D, Jewell DP. Adhesion molecules intercellular adhesion molecule-1 (ICAM-1), ICAM-3 and B7 are not expressed by epithelium in normal or inflamed colon. Clin Exp Immunol. 1995;101:157-63. (IHC-FS)
- Sousa AR, Lane SJ, Atkinson BA, Poston RN, Lee TH. The effects of prednisolone on the cutaneous tuberculin response in patients with corticosteroid-resistant bronchial asthma. J Allergy Clin Immunol. 1996;97:698-706. (IHC-FS)
- 4. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71-7. (ICC)
- Grewe M, Stege H, Vink A, Klammer M, Ruzicka T, Roza L, et al. Inhibition of intercellular adhesion molecule-1 (ICAM-1) expression in ultraviolet Birradiated human antigen-presenting cells is restored after repair of cyclobutane pyrimidine dimers. Exp Dermatol. 2000;9:423-30. (WB)
- Berendt AR, McDowall A, Craig AG, Bates PA, Sternberg MJ, Marsh K, et al. The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1-binding site. Cell. 1992;68:71-81. (Block)
- 7. Rizzuto CD, Sodroski JG. Contribution of virion ICAM-1 to human immunodeficiency virus infectivity and sensitivity to neutralization. J Virol. 1997;71:4847-51. (IP, Neut)
- Duperray A, Languino LR, Plescia J, McDowall A, Hogg N, Craig AG, et al. Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyte-endothelium bridging. J Biol Chem. 1997;272:435-41. (Block)
- 9. Porter JC, Falzon M, Hall A. Polarized localization of epithelial CXCL11 in chronic obstructive pulmonary disease and mechanisms of T cell egression. J Immunol. 2008;180:1866-77. (Block)
- Chen K, Reece LM, Leary JF. Mitochondrial glutathione modulates TNF-α-induced endothelial cell dysfunction. Free Radic Biol Med. 1999;27:100-9. (ELISA)
- 11. Kalogeris TJ, Kevil CG, Laroux FS, Coe LL, Phifer TJ, Alexander JS. Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells. Am J Physiol. 1999;276:L9-19. (ELISA)
- Kalogeris TJ, Laroux FS, Cockrell A, Ichikawa H, Okayama N, Phifer TJ, et al. Effect of selective proteasome inhibitors on TNF-induced activation of primary and transformed endothelial cells. Am J Physiol. 1999;276(4):C856-64. (ELISA)
- Chen K, Chang BH, Younan P, Shlykov SG, Sanborn BM, Chan L. Increased intracellular calcium transients by calmodulin antagonists differentially modulate tumor necrosis factor-α-induced E-selectin and ICAM-1 expression. Atherosclerosis. 2002;165:5-13. (ELISA)
- Franken M, Devergne O, Rosenzweig M, Annis B, Kieff E, Wang F. Comparative analysis identifies conserved tumor necrosis factor receptorassociated factor 3 binding sites in the human and simian Epstein-Barr virus oncogene LMP1. J Virol. 1996;70:7819-26. (FC)
- 15. Yamazaki K, Spuill G, Rhoderick J, Spielman J, Savaraj N, Podack ER. Small cell lung carcinomas express shared and private tumor antigens presented by HLA-A1 or HLA-A2. Cancer Res. 1999;59:4642-50. (FC)
- 16. Varas A, Jiménez E, Sacedón R, Rodríguez-Mahou M, Maroto E, Zapata AG, et al. Analysis of the human neonatal thymus: evidence for a transient thymic involution. J Immunol. 2000;164:6260-7. (FC)
- 17. Hernández-Lopez C, Valencia J, Hidalgo L, Martínez VG, Zapata AG, Sacedón R, et al. CXCL12/CXCR4 signaling promotes human thymic dendritic cell survival regulating the Bcl-2/Bax ratio. Immunol Lett. 2008;120:72-8. (FC)
- Edamura K, Nasu K, Iwami Y, Nishimura R, Ogawa H, Sasaki N, et al. Effect of long-term culture on the expression of antigens and adhesion molecule in single porcine pancreatic endocrine cells. Xenotransplantation. 2005;12:327-32. (ICC, Porcine Reactivity)