
SouthernBiotech 们

Mouse Anti-Human CD106

Cat. No.	Format	Size
9510-01	Purified (UNLB)	0.1 mg
9510-02	Fluorescein (FITC)	100 tests
9510-08	Biotin (BIOT)	100 tests
9510-09	R-phycoerythrin (PE)	100 tests

TNF α stimulated human endothelial cell line HUV-EC-C was stained with Mouse Anti-Human CD106-PE (SB Cat. No. 9510-09).

is

Overview

Clone	1.G11B1
Isotype	Mouse IgG₁κ
Immunogen	Unknown
Specificity	Human/Porcine CD106; Mr 110 kDa
Alternate Name(s)	VCAM-1, INCAM-110, vascular cell adhesion molecule-1
Workshop	V E039

Description

CD106, also known as INCAM-110, is a 110 kDa vascular adhesion cell adhesion molecule-1 (VCAM-1) that is member of the immunoglobulin superfamily. CD106 is expressed predominantly on cytokine-activated vascular endothelium but has also been identified on interfollicular dendritic cells, some macrophages, and bone marrow stromal cells. Endothelial CD106 binds the integrins $\alpha_4\beta_1$ (CD49d/CD29, VLA-4) and $\alpha_4\beta_7$ and contributes to extravasation of lymphocytes, monocytes, basophils, and eosinophils (but not neutrophils) from blood vessels, particularly at sites of inflammation. Unlike the β_2 integrins, the CD106-VLA-4 interaction can mediate both the initial tethering and rolling of lymphocytes on endothelium as well as their subsequent arrest and firm adhesion. CD106 expressed on non-vascular tissues has been implicated in the interaction of hematopoietic progenitors with bone marrow stromal cells, B cell binding to follicular dendritic cells, costimulation of T cells, and embryonic development. The monoclonal antibody 1.G11B1 inhibits *in vitro* binding of lymphocytes and monocytes to VCAM-1 on stimulated endothelium.

Applications

FC – Quality tested ⁹⁻¹⁵ IHC-FS – Reported in literature ³ ICC – Reported in literature ¹ IP – Reported in literature ¹ WB-NR – Reported in literature ² ELISA – Reported in literature ¹ Block – Reported in literature ¹ Adhesion – Reported in literature ¹

Working Dilutions

Flow Cytometry	Purified (UNLB) antibody FITC, BIOT, and PE conjugates For flow cytometry, the suggested use of these reagents	\leq 1 $\mu g/10^6$ cells 10 $\mu L/10^6$ cells is in a final volume of 100 μL	
Other Applications	Since applications vary, you should determine the optime appropriate for your specific need.	, you should determine the optimum working dilution for the product that is ecific need.	

For Research Use Only. Not for Diagnostic or Therapeutic Use.

Handling and Storage

- The purified (UNLB) antibody is supplied as 0.1 mg of purified immunoglobulin in 1.0 mL of borate buffered saline, pH 8.2. No preservatives or amine-containing buffer salts added. Store at 2-8°C.
- The fluorescein (FITC) conjugate is supplied as 100 tests in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The biotin (BIOT) conjugate is supplied as 100 tests in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- The R-phycoerythrin (PE) conjugate is supplied as 100 tests in 1.0 mL of PBS/NaN₃ and a stabilizing agent. Store at 2-8°C. **Do** not freeze!
- Protect fluorochrome-conjugated forms from light. Reagents are stable for the period shown on the label if stored as directed.

Warning

Some reagents contain sodium azide. Please refer to product specific SDS.

References

- Thornhill MH, Wellicome SM, Mahiouz DL, Lanchbury JS, Kyan-Aung U, Haskard DO. Tumor necrosis factor combines with IL-4 or IFN-γ to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and -independent binding mechanisms. J Immunol. 1991;146:592-8. (ELISA, IP, Adhesion, Block)
- Ali S, Kaur J, Patel KD. Intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and regulated on activation normal T cell expressed and secreted are expressed by human breast carcinoma cells and support eosinophil adhesion and activation. Am J Pathol. 2000;157:313-21. (WB-NR)
- Jain A, Sharma MC, Sarkar C, Bhatia R, Singh S, Handa R. Increased expression of cell adhesion molecules in inflammatory myopathies: diagnostic utility and pathogenetic insights. Folia Neuropathol. 2009;47:33-42. (IHC-FS)
- 4. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71-7. (ICC)
- 5. Halfon S, Abramov N, Grinblat B, Ginis I. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev. 2011;20:53-66. (ICC)
- Kalogeris TJ, Laroux FS, Cockrell A, Ichikawa H, Okayama N, Phifer TJ, et al. Effect of selective proteasome inhibitors on TNF-induced activation of primary and transformed endothelial cells. Am J Physiol. 1999;276(4):C856-64. (ELISA)
- 7. Kalogeris TJ, Kevil CG, Laroux FS, Coe LL, Phifer TJ, Alexander JS. Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells. Am J Physiol. 1999;276:L9-19. (ELISA)
- 8. Lester EA, Babensee JE. Proinflammatory phenotype of endothelial cells after coculture with biomaterial-treated blood cells. J Biomed Mater Res A. 2003;64:397-410. (ELISA)
- 9. Yamamoto H, Sedgwick JB, Busse WW. Differential regulation of eosinophil adhesion and transmigration by pulmonary microvascular endothelial cells. J Immunol. 1998;161:971-7. (FC)
- Nohé B, Dieterich H, Eichner M, Unertl K. Certain batches of albumin solutions influence the expression of endothelial cell adhesion molecules. Intensive Care Med. 1999;25:1381-5. (FC)
- 11. Yamamoto H, Sedgwick JB, Vrtis RF, Busse WW. The effect of transendothelial migration on eosinophil function. Am J Respir Cell Mol Biol. 2000;23:379-88. (FC)
- 12. Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS, et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol. 2007;18:3128-38. (FC)
- 13. Mariucci S, Rovati B, Bencardino K, Manzoni M, Danova M. Flow cytometric detection of circulating endothelial cells and endothelial progenitor cells in healthy subjects. Int J Lab Hematol. 2008;32:e40-8. (FC)
- Weckbach LT, Gola A, Winkelmann M, Jakob SM, Groesser L, Borgolte J, et al. The cytokine midkine supports neutrophil trafficking during acute inflammation by promoting adhesion via β₂ integrins (CD11/CD18). Blood. 2014;123:1887-96. (FC)
- Moscoso I, Centano A, López E, Rodriguez-Barbosa JI, Santamarina I, Filgueira P, et al. Differentiation "in vitro" of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplant Proc. 2005;37:481-2. (FC, Porcine Reactivity)