SouthernBiotech

Rat Anti-Mouse IL-17A

Cat. No.	Format	Size
10215-01	Purified (UNLB)	0.5 mg
10215-14	Low Endotoxin, Azide-Free (LE/AF)	0.5 mg

Overview

Clone	TC11-18H10
lsotype	Rat IgG₁κ
Immunogen	<i>E. coli</i> -expressed mouse IL-17
Specificity	Mouse IL-17A
Alternate Name(s)	Interleukin-17A, cytotoxic T lymphocyte-associated antigen 8, CTLA-8

Applications

ELISA-Capture - Quality tested 1 ELISPOT-Capture – Reported in literature 2,3 FC – Reported in literature ^{4,5} Neut - Reported in literature 6-12

Note - May be paired with the biotinylated clone TC11-8H4 (SB Cat. No. 10214-08) in a sandwich ELISA

Working Dilutions

ELISA Purified (UNLB) antibody ≤ 2 µg/mL **Other Applications** Since applications vary, you should determine the optimum working dilution for the product that is appropriate for your specific need.

For Research Use Only. Not for Diagnostic or Therapeutic Use.

Handling and Storage

- The purified (UNLB) antibody is supplied as 0.5 mg purified immunoglobulin in 1.0 mL of borate buffered saline, pH 8.2. No preservatives or amine-containing buffer salts added. Store at 2-8°C.
- The low endotoxin, azide-free (LE/AF) antibody is supplied as 0.5 mg purified immunoglobulin in 1.0 mL of PBS. Contains no preservative; handle under aseptic conditions. Store at 2-8°C or aliquot into smaller volumes and store at -20°C. Avoid multiple freeze / thaw cycles.
- Reagents are stable for the period shown on the label if stored as directed.

References

- 1. Amsen D, de Visser KE, Town T. Approaches to determine expression of inflammatory cytokines. Methods Mol Biol. 2009;511:107-42. (ELISA-Capture)
- 2. Nekrasova T, Shive C, Gao Y, Kawamura K, Guardia R, Landreth G, et al. ERK1-deficient mice show normal T cell effector function and are highly susceptible to experimental autoimmune encephalomyelitis. J Immunol. 2005;175:2374-80. (ELISPOT-Capture)
- Faust SM, Lu G, Marini BL, Zou W, Gordon D, Iwakura Y, et al. Role of T cell TGFβ signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. J Immunol. 2009;183:7297-306. (ELISPOT-Capture)
- 4. Hamada H, Garcia-Hernandez Mde L, Reome JB, Misra SK, Strutt TM, McKinstry KK, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81. (FC)
- Le Huu D, Matsushita T, Jin G, Hamaguchi Y, Hasegawa M, Takehara K, et al. Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood. 2013;121:3274-83. (FC)
- 6. He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. CD8⁺ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J Immunol. 2006;177:6852-8. (Neut)
- 7. Yusuf N, Nasti TH, Long JA, Naseemuddin M, Lucas AP, Xu H, et al. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res. 2008;68:615-22. (Neut)
- He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. IL-17 and IFN-γ mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol. 2009;183:1463-70. (Neut)
- 9. Xiao M, Wang C, Zhang J, Li Z, Zhao X, Qin Z. IFNγ promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res. 2009;69:2010-7. (Neut)
- He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol. 2010;184:2281-8. (Neut)
- 11. Kish DD, Volokh N, Baldwin WM 3rd, Fairchild RL. Hapten application to the skin induces an inflammatory program directing hapten-primed effector CD8 T cell interaction with hapten-presenting endothelial cells. J Immunol. 2011;186:2117-26. (Neut)
- 12. Karmakar S, Bhaumik SK, Paul J, De T. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLoS Pathog. 2012;8(4):e1002646. (Neut)